Use only as directed intentional misuse by deliberately

Dosage forms are provided for most of the Pharmacopeial drug substances, but the processes for the preparation of many of them are, in general, beyond the scope of the Pharmacopeia. In addition to defining the dosage forms, this section presents the general principles involved in the manufacture of some of them, particularly on a small scale. Other information that is given bears on the use of the Pharmacopeial substances in extemporaneous compounding of dosage forms.


BIOAVAILABILITY

Bioavailability, or the extent to which the therapeutic constituent of a pharmaceutical dosage form intended for oral or topical use is available for absorption, is influenced by a variety of factors. Among the inherent factors known to affect absorption are the method of manufacture or method of compounding; the particle size and crystal form or polymorph of the drug substance; and the diluents and excipients used in formulating the dosage form, including fillers, binders, disintegrating agents, lubricants, coatings, solvents, suspending agents, and dyes. Lubricants and coatings are foremost among these. The maintenance of a demonstrably high degree of bioavailability requires particular attention to all aspects of production and quality control that may affect the nature of the finished dosage form.


TERMINOLOGY

Occasionally it is necessary to add solvent to the contents of a container just prior to use, usually because of instability of some drugs in the diluted form. Thus, a solid diluted to yield a suspension is called [DRUG] for Suspension; a solid dissolved and diluted to yield a solution is called [DRUG] for Solution; and a solution or suspension diluted to yield a more dilute form of the drug is called [DRUG] Oral Concentrate. After dilution, it is important that the drug be homogeneously dispersed before administration.

Pharmaceutical aerosols are products that are packaged under pressure and contain therapeutically active ingredients that are released upon activation of an appropriate valve system. They are intended for topical application to the skin as well as local application into the nose (nasal aerosols), mouth (lingual aerosols), or lungs (inhalation aerosols). These products may be fitted with valves enabling either continuous or metered-dose delivery; hence, the terms “[DRUG] Metered Topical Aerosols,” “[DRUG] Metered Nasal Aerosols,” etc.

The term “aerosol” refers to the fine mist of spray that results from most pressurized systems. However, the term has been broadly misapplied to all self-contained pressurized products, some of which deliver foams or semisolid fluids. In the case of Inhalation Aerosols , the particle size of the delivered medication must be carefully controlled, and the average size of the particles should be under 5 µm. These products are also known as metered-dose inhalers (MDIs). Other aerosol sprays may contain particles up to several hundred micrometers in diameter.

The basic components of an aerosol system are the container, the propellant, the concentrate containing the active ingredient(s), the valve, and the actuator. The nature of these components determines such characteristics as particle size distribution, uniformity of dose for metered valves, delivery rate, wetness and temperature of the spray, spray pattern and velocity or plume geometry, foam density, and fluid viscosity.

Types of Aerosols

Aerosols consist of two-phase (gas and liquid) or three-phase (gas, liquid, and solid or liquid) systems. The two-phase aerosol consists of a solution of active ingredients in liquefied propellant and the vaporized propellant. The solvent is composed of the propellant or a mixture of the propellant and cosolvents such as alcohol, propylene glycol, and polyethylene glycols, which are often used to enhance the solubility of the active ingredients.

Three-phase systems consist of a suspension or emulsion of the active ingredient(s) in addition to the vaporized propellants. A suspension consists of the active ingredient(s) that may be dispersed in the propellant system with the aid of suitable excipients such as wetting agents and/or solid carriers such as talc or colloidal silicas.

A foam aerosol is an emulsion containing one or more active ingredients, surfactants, aqueous or nonaqueous liquids, and the propellants. If the propellant is in the internal (discontinuous) phase (i.e., of the oil-in-water type), a stable foam is discharged; and if the propellant is in the external (continuous) phase (i.e., of the water-in-oil type), a spray or a quick-breaking foam is discharged.

Propellants

The propellant supplies the necessary pressure within an aerosol system to expel material from the container and, in combination with other components, to convert the material into the desired physical form. Propellants may be broadly classified as liquefied or compressed gases having vapor pressures generally exceeding atmospheric pressure. Propellants within this definition include various hydrocarbons, especially halogenated derivatives of methane, ethane, and propane, low molecular weight hydrocarbons such as the butanes and pentanes, and compressed gases such as carbon dioxide, nitrogen, and nitrous oxide. Mixtures of propellants are frequently used to obtain desirable pressure, delivery, and spray characteristics. A good propellant system should have the proper vapor pressure characteristics consistent with the other aerosol components.

The primary function of the valve is to regulate the flow of the therapeutic agent and propellant from the container. The spray characteristics of the aerosol are influenced by orifice dimension, number, and location. Most aerosol valves provide for continuous spray operation and are used on most topical products. However, pharmaceutical products for oral or nasal inhalation often utilize metered-dose valves that must deliver a uniform quantity of spray upon each valve activation. The accuracy and reproducibility of the doses delivered from metering valves are generally good, comparing favorably to the uniformity of solid dosage forms such as tablets and capsules. However, when aerosol packages are stored improperly, or when they have not been used for long periods of time, valves must be primed before use. Materials used for the manufacture of valves should be inert to the formulations used. Plastic, rubber, aluminum, and stainless steel valve components are commonly used. Metered-dose valves must deliver an accurate dose within specified tolerances.

An actuator is the fitting attached to an aerosol valve stem, which when depressed or moved, opens the valve, and directs the spray containing the drug preparation to the desired area. The actuator usually indicates the direction in which the preparation is dispensed and protects the hand or finger from the refrigerant effects of the propellant. Actuators incorporate an orifice that may vary widely in size and shape. The size of this orifice, the expansion chamber design, and the nature of the propellant and formulation influence the delivered dose as well as the physical characteristics of the spray, foam, or stream of solid particles dispensed. For inhalation aerosols, an actuator capable of delivering the medication in the proper particle size range and with the appropriate spray pattern and plume geometry is utilized.

Containers

Aerosol containers usually are made of glass, plastic, or metal, or a combination of these materials. Glass containers must be precisely engineered to provide the maximum in pressure safety and impact resistance. Plastics may be employed to coat glass containers for improved safety characteristics, or to coat metal containers to improve corrosion resistance and enhance stability of the formulation. Suitable metals include stainless steel, aluminum, and tin-plated steel. Extractables or leachables (e.g., drawing oils, cleaning agents, etc.) and particulates on the internal surfaces of containers should be controlled.

Manufacture

Aerosols are usually prepared by one of two general processes. In the “cold-fill” process, the concentrate (generally cooled to a temperature below 0) and the refrigerated propellant are measured into open containers (usually chilled). The valve-actuator assembly is then crimped onto the container to form a pressure-tight seal. During the interval between propellant addition and crimping, sufficient volatilization of propellant occurs to displace air from the container. In the “pressure-fill” method, the concentrate is placed in the container, and either the propellant is forced under pressure through the valve orifice after the valve is sealed, or the propellant is allowed to flow under the valve cap and then the valve assembly is sealed (“under-the-cap” filling). In both cases of the “pressure-fill” method, provision must be made for evacuation of air by means of vacuum or displacement with a small amount of propellant vapor. Manufacturing process controls usually include monitoring of proper formulation and propellant fill weight and pressure testing, leak testing, and valve function testing of the finished aerosol. Microbiological attributes should also be controlled.

Extractable Substances

Since pressurized inhalers and aerosols are normally formulated with organic solvents as the propellant or the vehicle, leaching of extractables from the elastomeric and plastic components into the formulation is a potentially serious problem. Thus, the composition and the quality of materials used in the manufacture of the valve components (e.g., stem, gaskets, housing, etc.) must be carefully selected and controlled. Their compatibility with formulation components should be well established so as to prevent distortion of the valve components and to minimize changes in the medication delivery, leak rate, and impurity profile of the drug product over time. The extractable profiles of a representative sample of each of the elastomeric and plastic components of the valve should be established under specified conditions and should be correlated to the extractable profile of the aged drug product or placebo, to ensure reproducible quality and purity of the drug product. Extractables, which may include polynuclear aromatics, nitrosamines, vulcanization accelerators, antioxidants, plasticizers, monomers, etc., should be identified and minimized wherever possible.

Specifications and limits for individual and total extractables from different valve components may require the use of different analytical methods. In addition, the standard USP biological testing (see the general test chapters Biological Reactivity Tests, In Vitro 87 and Biological Reactivity Tests, In Vivo 88 ) as well as other safety data may be needed.

Medicinal aerosols should contain at least the following warning information on the label as in accordance with appropriate regulations.

Warning— Avoid inhaling. Avoid spraying into eyes or onto other mucous membranes.

NOTE— The statement “Avoid inhaling” is not necessary for preparations specifically designed for use by inhalation. The phrase “or other mucous membranes” is not necessary for preparations specifically designed for use on mucous membranes.

Warning— Contents under pressure. Do not puncture or incinerate container. Do not expose to heat or store at temperatures above 120 F (49 C). Keep out of reach of children.

In addition to the aforementioned warnings, the label of a drug packaged in an aerosol container in which the propellant consists in whole or in part of a halocarbon or hydrocarbon shall, where required under regulations of the FDA, bear either of the following warnings:

Warning— Do not inhale directly; deliberate inhalation of contents can cause death.

Warning— Use only as directed; intentional misuse by deliberately concentrating and inhaling the contents can be harmful or fatal.

Boluses are large elongated tablets intended for administration to animals (see Tablets ).

Capsules are solid dosage forms in which the drug is enclosed within either a hard or soft soluble container or “shell.” The shells are usually formed from gelatin; however, they also may be made from starch or other suitable substances. Hard-shell capsule sizes range from No. 5, the smallest, to No. 000, which is the largest, except for veterinary sizes. However, size No. 00 generally is the largest size acceptable to patients. Size 0 hard gelatin capsules having an elongated body (known as size OE) also are available, which provide greater fill capacity without an increase in diameter. Hard gelatin capsules consist of two, telescoping cap and body pieces. Generally, there are unique grooves or indentations molded into the cap and body portions to provide a positive closure when fully engaged, which helps prevent the accidental separation of the filled capsules during shipping and handling. Positive closure also may be affected by spot fusion (“welding”) of the cap and body pieces together through direct thermal means or by application of ultrasonic energy. Factory-filled hard gelatin capsules may be completely sealed by banding, a process in which one or more layers of gelatin are applied over the seam of the cap and body, or by a liquid fusion process wherein the filled capsules are wetted with a hydroalcoholic solution that penetrates into the space where the cap overlaps the body, and then dried. Hard-shell capsules made from starch consist of two, fitted cap and body pieces. Since the two pieces do not telescope or interlock positively, they are sealed together at the time of filling to prevent their separation. Starch capsules are sealed by the application of a hydroalcoholic solution to the recessed section of the cap immediately prior to its being placed onto the body.

The banding of hard-shell gelatin capsules or the liquid sealing of hard-shell starch capsules enhances consumer safety by making the capsules difficult to open without causing visible, obvious damage, and may improve the stability of contents by limiting O 2 penetration. Industrially filled hard-shell capsules also are often of distinctive color and shape or are otherwise marked to identify them with the manufacturer. Additionally, such capsules may be printed axially or radially with strengths, product codes, etc. Pharmaceutical-grade printing inks are usually based on shellac and employ FDA-approved pigments and lake dyes.

In extemporaneous prescription practice, hard-shell capsules may be hand-filled; this permits the prescriber a latitude of choice in selecting either a single drug or a combination of drugs at the exact dosage level considered best for the individual patient. This flexibility gives hard-shell capsules an advantage over compressed tablets and soft-shell capsules as a dosage form. Hard-shell capsules are usually formed from gelatins having relatively high gel strength. Either type may be used, but blends of pork skin and bone gelatin are often used to optimize shell clarity and toughness. Hard-shell capsules also may be formed from starch or other suitable substances. Hard-shell capsules may also contain colorants, such as D&C and FD&C dyes or the various iron oxides, opaquing agents such as titanium dioxide, dispersing agents, hardening agents such as sucrose, and preservatives. They normally contain between 10% and 15% water.

Hard gelatin capsules are made by a process that involves dipping shaped pins into gelatin solutions, after which the gelatin films are dried, trimmed, and removed from the pins, and the body and cap pieces are joined. Starch capsules are made by injection molding a mixture of starch and water, after which the capsules are dried. A separate mold is used for caps and bodies, and the two parts are supplied separately. The empty capsules should be stored in tight containers until they are filled. Since gelatin is of animal origin and starch is of vegetable origin, capsules made with these materials should be protected from potential sources of microbial contamination.

Hard-shell capsules typically are filled with powder, beads, or granules. Inert sugar beads (nonpareils) may be coated with active ingredients and coating compositions that provide extended-release profiles or enteric properties. Alternatively, larger-dose active ingredients themselves may be suitably formed into pellets and then coated. Semisolids or liquids also may be filled into hard-shell capsules; however, when the latter are encapsulated, one of the sealing techniques must be employed to prevent leakage.

In hard gelatin capsule filling operations, the body and cap of the shell are separated prior to dosing. In hard starch shell filling operations, the bodies and caps are supplied separately and are fed into separate hoppers of the filling machine. Machines employing various dosing principles may be employed to fill powders into hard-shell capsules; however, most fully automatic machines form powder plugs by compression and eject them into empty capsule bodies. Accessories to these machines generally are available for the other types of fills. Powder formulations often require adding fillers, lubricants, and glidants to the active ingredients to facilitate encapsulation. The formulation, as well as the method of filling, particularly the degree of compaction, may influence the rate of drug release. The addition of wetting agents to the powder mass is common where the active ingredient is hydrophobic. Disintegrants also may be included in powder formulations to facilitate deaggregation and dispersal of capsule plugs in the gut. Powder formulations often may be produced by dry blending; however, bulky formulations may require densification by roll compaction or other suitable granulation techniques.

Powder mixtures that tend to liquefy may be dispensed in hard-shell capsules if an absorbent such as magnesium carbonate, colloidal silicon dioxide, or other suitable substance is used. Potent drugs are often mixed with an inert diluent before being filled into capsules. Where two mutually incompatible drugs are prescribed together, it is sometimes possible to place one in a small capsule and then enclose it with the second drug in a larger capsule. Incompatible drugs also can be separated by placing coated pellets or tablets, or soft-shell capsules of one drug into the capsule shell before adding the second drug.

Thixotropic semisolids may be formed by gelling liquid drugs or vehicles with colloidal silicas or powdered high molecular weight polyethylene glycols. Various waxy or fatty compounds may be used to prepare semisolid matrices by fusion.

Soft-shell capsules made from gelatin (sometimes called softgels) or other suitable material require large-scale production methods. The soft gelatin shell is somewhat thicker than that of hard-shell capsules and may be plasticized by the addition of a polyol such as sorbitol or glycerin. The ratio of dry plasticizer to dry gelatin determines the “hardness” of the shell and may be varied to accommodate environmental conditions as well as the nature of the contents. Like hard shells, the shell composition may include approved dyes and pigments, opaquing agents such as titanium dioxide, and preservatives. Flavors may be added and up to 5% sucrose may be included for its sweetness and to produce a chewable shell. Soft gelatin shells normally contain 6% to 13% water. Soft-shell capsules also may be printed with a product code, strength, etc. In most cases, soft-shell capsules are filled with liquid contents. Typically, active ingredients are dissolved or suspended in a liquid vehicle. Classically, an oleaginous vehicle such as a vegetable oil was used; however, nonaqueous, water-miscible liquid vehicles such as the lower-molecular-weight polyethylene glycols are more common today due to fewer bioavailability problems.

Available in a wide variety of sizes and shapes, soft-shell capsules are both formed, filled, and sealed in the same machine; typically, this is a rotary die process, although a plate process or reciprocating die process also may be employed. Soft-shell capsules also may be manufactured in a bubble process that forms seamless spherical capsules. With suitable equipment, powders and other dry solids also may be filled into soft-shell capsules.

Liquid-filled capsules of either type involve similar formulation technology and offer similar advantages and limitations. For instance, both may offer advantages over dry-filled capsules and tablets in content uniformity and drug dissolution. Greater homogeneity is possible in liquid systems, and liquids can be metered more accurately. Drug dissolution may benefit because the drug may already be in solution or at least suspended in a hydrophilic vehicle. However, the contact between the hard or soft shell and its liquid content is more intimate than exists with dry-filled capsules, and this may enhance the chances for undesired interactions. The liquid nature of capsule contents presents different technological problems than dry-filled capsules in regard to disintegration and dissolution testing. From formulation, technological, and biopharmaceutical points of view, liquid-filled capsules of either type have more in common than liquid-filled and dry-filled capsules having the same shell composition. Thus, for compendial purposes, standards and methods should be established based on capsule contents rather than on whether the contents are filled into hard- or soft-shell capsules.

DELAYED-RELEASE CAPSULES

Capsules may be coated, or, more commonly, encapsulated granules may be coated to resist releasing the drug in the gastric fluid of the stomach where a delay is important to alleviate potential problems of drug inactivation or gastric mucosal irritation. The term “delayed-release” is used for Pharmacopeial monographs on enteric coated capsules that are intended to delay the release of medicament until the capsule has passed through the stomach, and the individual monographs include tests and specifications for Drug release (see Drug Release 724 ) or Disintegration (see Disintegration 701 ).

EXTENDED-RELEASE CAPSULES

Extended-release capsules are formulated in such manner as to make the contained medicament available over an extended period of time following ingestion. Expressions such as “prolonged-action,” “repeat-action,” and “sustained-release” have also been used to describe such dosage forms. However, the term “extended-release” is used for Pharmacopeial purposes and requirements for Drug release (see Drug Release 724 ) typically are specified in the individual monographs.


CONCENTRATE FOR DIP

Concentrate for Dip is a preparation containing one or more active ingredients usually in the form of a paste or solution. It is used to prepare a diluted suspension, emulsion, or solution of the active ingredient(s) for the prevention and treatment of ectoparasitic infestations of animals. The diluted preparation (Dip) is applied by complete immersion of the animal or, where appropriate, by spraying. Concentrate for Dip may contain suitable antimicrobial preservatives.

Creams are semisolid dosage forms containing one or more drug substances dissolved or dispersed in a suitable base. This term has traditionally been applied to semisolids that possess a relatively fluid consistency formulated as either water-in-oil (e.g., Cold Cream ) or oil-in-water (e.g., Fluocinolone Acetonide Cream ) emulsions. However, more recently the term has been restricted to products consisting of oil-in-water emulsions or aqueous microcrystalline dispersions of long-chain fatty acids or alcohols that are water washable and more cosmetically and aesthetically acceptable. Creams can be used for administering drugs via the vaginal route (e.g., Triple Sulfa Vaginal Cream ).

See Solutions .

Emulsions are two-phase systems in which one liquid is dispersed throughout another liquid in the form of small droplets. Where oil is the dispersed phase and an aqueous solution is the continuous phase, the system is designated as an oil-in-water emulsion. Conversely, where water or an aqueous solution is the dispersed phase and oil or oleaginous material is the continuous phase, the system is designated as a water-in-oil emulsion. Emulsions are stabilized by emulsifying agents that prevent coalescence, the merging of small droplets into larger droplets and, ultimately, into a single separated phase. Emulsifying agents (surfactants) do this by concentrating in the interface between the droplet and external phase and by providing a physical barrier around the particle to coalescence. Surfactants also reduce the interfacial tension between the phases, thus increasing the ease of emulsification upon mixing.

Natural, semisynthetic, and synthetic hydrophilic polymers may be used in conjunction with surfactants in oil-in-water emulsions as they accumulate at interfaces and also increase the viscosity of the aqueous phase, thereby decreasing the rate of formation of aggregates of droplets. Aggregation is generally accompanied by a relatively rapid separation of an emulsion into a droplet-rich and droplet-poor phase. Normally the density of an oil is lower than that of water, in which case the oil droplets and droplet aggregates rise, a process referred to as creaming. The greater the rate of aggregation, the greater the droplet size and the greater the rate of creaming. The water droplets in a water-in-oil emulsion generally sediment because of their greater density.

The consistency of emulsions varies widely, ranging from easily pourable liquids to semisolid creams. Generally oil-in-water creams are prepared at high temperature, where they are fluid, and cooled to room temperature, whereupon they solidify as a result of solidification of the internal phase. When this is the case, a high internal-phase volume to external-phase volume ratio is not necessary for semisolid character, and, for example, stearic acid creams or vanishing creams are semisolid with as little as 15% internal phase. Any semisolid character with water-in-oil emulsions generally is attributable to a semisolid external phase.

All emulsions require an antimicrobial agent because the aqueous phase is favorable to the growth of microorganisms. The presence of a preservative is particularly critical in oil-in-water emulsions where contamination of the external phase occurs readily. Since fungi and yeasts are found with greater frequency than bacteria, fungistatic as well as bacteriostatic properties are desirable. Bacteria have been shown to degrade nonionic and anionic emulsifying agents, glycerin, and many natural stabilizers such as tragacanth and guar gum.

Complications arise in preserving emulsion systems, as a result of partitioning of the antimicrobial agent out of the aqueous phase where it is most needed, or of complexation with emulsion ingredients that reduce effectiveness. Therefore, the effectiveness of the preservative system should always be tested in the final product. Preservatives commonly used in emulsions include methyl-, ethyl-, propyl-, and butyl-parabens, benzoic acid, and quaternary ammonium compounds.

See also Creams and Ointments .
EXTRACTS AND FLUIDEXTRACTS

Extracts are concentrated preparations of vegetable or animal drugs obtained by removal of the active constituents of the respective drugs with suitable menstrua, by evaporation of all or nearly all of the solvent, and by adjustment of the residual masses or powders to the prescribed standards.

In the manufacture of most extracts, the drugs are extracted by percolation. The entire percolates are concentrated, generally by distillation under reduced pressure in order to subject the drug principles to as little heat as possible.

Fluidextracts are liquid preparations of vegetable drugs, containing alcohol as a solvent or as a preservative, or both, and so made that, unless otherwise specified in an individual monograph, each mL contains the therapeutic constituents of 1 g of the standard drug that it represents.

A fluidextract that tends to deposit sediment may be aged and filtered or the clear portion decanted, provided the resulting clear liquid conforms to the Pharmacopeial standards.

Fluidextracts may be prepared from suitable extracts.

Gels (sometimes called Jellies) are semisolid systems consisting of either suspensions made up of small inorganic particles or large organic molecules interpenetrated by a liquid. Where the gel mass consists of a network of small discrete particles, the gel is classified as a two-phase system (e.g., Aluminum Hydroxide Gel ). In a two-phase system, if the particle size of the dispersed phase is relatively large, the gel mass is sometimes referred to as a magma (e.g., Bentonite Magma ). Both gels and magmas may be thixotropic, forming semisolids on standing and becoming liquid on agitation. They should be shaken before use to ensure homogeneity and should be labeled to that effect. (See Suspensions. )

Single-phase gels consist of organic macromolecules uniformly distributed throughout a liquid in such a manner that no apparent boundaries exist between the dispersed macromolecules and the liquid. Single-phase gels may be made from synthetic macromolecules (e.g., Carbomer ) or from natural gums (e.g., Tragacanth ). The latter preparations are also called mucilages. Although these gels are commonly aqueous, alcohols and oils may be used as the continuous phase. For example, mineral oil can be combined with a polyethylene resin to form an oleaginous ointment base.

Gels can be used to administer drugs topically or into body cavities (e.g., Phenylephrine Hydrochloride Nasal Jelly ).


IMPLANTS (PELLETS)

Implants or pellets are small sterile solid masses consisting of a highly purified drug (with or without excipients) made by compression or molding. They are intended for implantation in the body (usually subcutaneously) for the purpose of providing continuous release of the drug over long periods of time. Implants are administered by means of a suitable special injector or surgical incision. This dosage form has been used to administer hormones such as testosterone or estradiol. They are packaged individually in sterile vials or foil strips.


INFUSIONS, INTRAMAMMARY

Intramammary infusions are suspensions of drugs in suitable oil vehicles. These preparations are intended for veterinary use only, and are administered by instillation via the teat canals into the udders of milk-producing animals.


INHALATIONS

Inhalations are drugs or solutions or suspensions of one or more drug substances administered by the nasal or oral respiratory route for local or systemic effect.

Solutions of drug substances in sterile water for inhalation or in sodium chloride inhalation solution may be nebulized by use of inert gases. Nebulizers are suitable for the administration of inhalation solutions only if they give droplets sufficiently fine and uniform in size so that the mist reaches the bronchioles. Nebulized solutions may be breathed directly from the nebulizer or the nebulizer may be attached to a plastic face mask, tent, or intermittent positive pressure breathing (IPPB) machine.

Another group of products, also known as metered-dose inhalers (MDIs) are propellant-driven drug suspensions or solutions in liquified gas propellant with or without a cosolvent and are intended for delivering metered doses of the drug to the respiratory tract. An MDI contains multiple doses, often exceeding several hundred. The most common single-dose volumes delivered are from 25 to 100 µL (also expressed as mg) per actuation.

Examples of MDIs containing drug solutions and suspensions in this pharmacopeia are Epinephrine Inhalation Aerosol and Isoproterenol Hydrochloride and Phenylephrine Bitartrate Inhalation Aerosol, respectively.

Powders may also be administered by mechanical devices that require manually produced pressure or a deep inhalation by the patient (e.g., Cromolyn Sodium for Inhalation ).

A special class of inhalations termed inhalants consists of drugs or combination of drugs, that by virtue of their high vapor pressure, can be carried by an air current into the nasal passage where they exert their effect. The container from which the inhalant generally is administered is known as an inhaler.


INJECTIONS

An Injection is a preparation intended for parenteral administration or for constituting or diluting a parenteral article prior to administration (see Injections 1 ).

Each container of an Injection is filled with a volume in slight excess of the labeled “size” or that volume that is to be withdrawn. The excess volumes recommended in the accompanying table are usually sufficient to permit withdrawal and administration of the labeled volumes.